The GPCA Model ver. 0.9

FOR RESEARCH PURPOSES ONLY

The Generic Patient Controlled Analgesia Pump Model
1The Generic Patient Controlled Analgesia Pump Model

11.
Overview of the Generic Patient Controlled Analgesia Pump Model

22.
The GPCA Model Architecture

22.1.
Architecture Overview

42.2.
GPCA Model Interface

83.
The GPCA Model

83.1.
The GPCA Model Definition

83.2.
Assumptions

93.3.
State Machine Descriptions

93.3.1.
State Controller

143.3.2.
The Alarm Detection State Machine

163.4.
Definitions

224.
An Example Implementation of an Extended GPCA Model

224.1.
Implementation of a User Interface

224.1.1.
User Interface Overview

234.1.2.
Inputs and Output Events

244.1.3.
Implementation Details

244.1.3.1.
The Dirty Flag

244.1.3.2.
Simulation Mode

244.1.4.
List of Variables

254.1.4.1.
Global Variables

254.1.4.2.
User Interface Objects

254.1.4.3.
User-defined handles

264.2.
System Component Models

274.2.1.
Component Descriptions

274.2.1.1.
Component PatientBarcodeReader

274.2.1.2.
Component DrugLibraryReader

284.2.1.3.
Component DrugBarcodeReader

284.2.1.4.
Component PumpController

294.2.1.5.
Component Flow Meter Controller

294.2.1.6.
Component Drug Reservoir Controller

294.2.1.7.
Component Power Unit Controller

294.2.1.8.
Component Environmental Sensor Controller

304.2.1.9.
Component Log File Controller

304.2.2.
S-Function Implementations

305.
Future Work

1. Overview of the Generic Patient Controlled Analgesia Pump Model
The Generic Patient Controlled Analgesia pump model (or GPCA model for short) is an abstract representation of the software used in a typical Patient Controlled Analgesia (PCA) infusion pump. The aim of the GPCA pump model is to:

1. Demonstrate the use of model-based development techniques for engineering medical device software,

2. Provide a base open-source reference model that can be extended and modified to develop specific implementations of PCA pump software, and
3. Provide a reasonably complex medical design for researchers to use in developing, refining, and improving theories and methods needed to develop certifiably dependable medical devices.
The artifacts of the GPCA project include –
· a description of the GPCA model and how it can be extended (this document),
· specifications for the GPCA model, expressed in terms of state transition relations
· a Matlab Simulink/Stateflow implementation of the GPCA specifications
· extensions to the base GPCA model to incorporate a user interface and example system components
· hazards analysis and safety requirements for the GPCA model, used to derive the model specifications

The GPCA model as presented is a constrained abstraction of a real-world implementation. That is to say, the model specifications reflect typical real-world PCA pump functionality. However, it only captures functionality that is generally common to the broad class of PCA pumps. The specifications provided facilitate illustration of how model-based development techniques can be employed to develop software for a PCA pump. They are not intended to prescribe any particular implementation of an infusion pump.
The GPCA model provides a reference PCA pump implementation that can be verified against safety requirements using formal verification techniques. Once this reference model is ascertained to be complete and correct, it can be extended to incorporate additional, more product-specific features of PCA or PCA like infusion pumps.
Academics and researchers are encouraged to make use of this model (and the associated specifications) to extend and modify existing model functions. This could include extending the GPCA model to add more detail to components, or modify the existing model (and specifications) to allow for additional components, and possibly additional states in the model.

Although the model has been tested in an ad hoc manner, it has not been formally verified for correctness. This is mainly due to the fact that the GPCA model has been defined using state-chart semantics. Currently, there are no readily available automated tools to perform exhaustive model checking for state-chart models. We recognize this as an open research and engineering issue, and hope that our efforts will encourage the software research community to develop methods and automated tools for verifying state-chart models.
The current model may seem relatively simple because it only covers basic PCA pump functions. This is an outcome of trying to capture the common modalities across all PCA pumps. We hope that medical device manufacturers and users will contribute to extending the model.

2. The GPCA Model Architecture

2.1. Architecture Overview

The GPCA model is based upon a three-tiered architecture, as depicted in Figure 1. At the lowest tier in this architecture are system model components representing actual pump components (such as the pump controller, delivery mechanism, power unit, etc.). The middle tier consists of the core GPCA model, implemented as a pair of communicating state machines (labeled State Controller and Alarm Detecting Component in the figure). The top tier represents the pump’s user interface (UI) that is used to display various messages, and allows users to program the pump. Signals provided by the core GPCA model enable communication with the user interface and various system components.
[image: image1.png]S

X454 %
)
cel|o|2]2|E e
g 21212128 Elz
£ EH K EE ==
2 alzlz|=z8 =%
AELE S |2
g HEHEE 21z
) H EL 5|2
GPCA Model H < M E
YV
Current Failure Condition
»>]
Alarm/Warning Notification >
Pump Ready / Not Ready
D y y >]
Alarm Detecting
Component State Controller
Infusion In Progress
[«
Clear Alarm
[«
A A A
| &
& - - 3
£ gl & H g
£ = H E 8
£E Z| g2 &
[Failure/Anomaly Flags SE a2 SE| =
=S 2| £ | s
¥ 2| E 2
== =23 E
g £
]
A 4

System Model(s)

Figure 1: The GPCA Model System Architecture

The primary purpose of the GPCA State Controller is to model the drug administration process such as the programmed basal rate and any bolus doses that the patient may request. The State Controller also provides a minimal set of information to enable communication with external components, including the user interface and hardware components necessary to guarantee that the state machine functions correctly.
Inputs the GPCA model receives from the User Interface include a vector of event flags and numeric values. Each element of the event flag vector is mapped to a particular button in the user interface. For any user action (i.e. button press), the state machine performs one or more appropriate actions, and updates the current state information in the UI.

System Model components for the GPCA model are abstracted as computational circuit models. The output from each of these circuits simulates feedback that a particular hardware component might provide to the pump software. More specifically, the information flowing from Simulink circuits to the state machine can be categorized as: 1) drug library and patient information, 2) infusion status data, and 3) hardware status and environmental conditions data detected by hardware. The Alarm Detecting and State Controller components each consume particular types of information from Simulink and behave in a manner consistent with the core GPCA model.
To simplify the communication between the System Model and the GPCA, hardware status and environmental conditions provided by System Model are treated as a set of failure or anomaly flags. The Alarm Detection State Machine takes these flags as input and reports corresponding alarms or warnings to the State Controller if any flag is detected as positive. Failures and anomalies handled by the GPCA model can be categorized into three levels based on their levels of severity – level 1 alarms (highest priority), level 2 alarms (medium-level priority) and warnings (low priority). Table 1 summarizes the failures handled by the Alarm Detection State Machine. For details of the Alarm Detection State Machine, please refer the description in subsection 3.3.2 and its functional specifications.

Table 1: Failures and anomalies handled by the GPCA model

	Level of Severity
	Failures and Anomalies

	Level One Failures

(force infusion to be terminated immediately, and pump to be shut down)
	Power Supply failure

	
	Real Time Clock failures

	
	CPU failures

	
	Memory failures

	
	The Pump is extremely hot

	
	Failures that watchdog detects

	Level Two Failures

(force the current infusion, basal or bolus, to terminate immediately)
	Drug reservoir door open

	
	Drug reservoir empty

	
	Occlusion

	
	Pump flow rate higher than a safe threshold

	
	Pump flow rate lower than a safe threshold

	
	Pump flow rate less than preset KVO rate

	
	Pump flow rate greater than maximum rate allowed for pump

	
	Current infusion paused longer than a predefined duration

	
	Air-in-line embolism

	Warnings
	Pump flow rate variance out of range

	
	Drug reservoir low

	
	Infusion paused for too long

	
	Pump logging error

	
	Battery life remaining too low

	
	Battery charging problem

	
	Power supply voltage out of range

	
	Pump too hot

	
	Ambient temperature out range

	
	Ambient humidity out range

	
	Ambient air pressure out range

2.2. GPCA Model Interface

The GPCA pump provides input and output signals that are used to interface with the model. These signals can be used to extend the model by adding additional components to it. A developer can also add additional signals to this interface to provide specific functionality to the model.

Figure 2 shows the input and output interface to the GPCA pump model. As shown in the figure, the interface model consists of a number of buses (or structures). Each bus defines signals that allow the GPCA pump model to interface with components that extend the model (both system and user interface).

[image: image2.png]———— Prug Library input

Infusion Instructions Outpuf

———-Patient information input

Drug Library Output)

————Prug information input

———PEnvironment Sensor Signals patient Information Output)

———Hiardware Sensor Signals

Infusion Status Outout
—————pofusion Sensor Signais
———p-{fusion Status Input Current Statef

—————>Pump Configuration Status input

Drug Information Outpuf

P {iser Actions.

—

Alarming Conditionf
nfusion Parameters input

GPCA Software Controller

Figure 2: The GPCA Pump Model Interface

The definitions for the various buses used in the GPCA pump model interface are listed below. All of these buses can be modified to include additional signals as necessary. If required, additional buses can be added to the GPCA model interface as well.
Bus Name:

PatientInformation

Interface Type:
Input and Output

Signals:

patientID

Unsigned integer

patientAge

Unsigned integer

patientGender

Unsigned integer

patientWeight

Unsigned integer
Description:
The PatientInformation bus is used to transmit patient data to the GPCA model and user interface. This data is expected to be scanned in through a patient barcode reader, or entered manually.
Bus Name:

DrugInformation

Interface Type:
Input and Output

Signals:

drugName

Unsigned integer

drugDoseAmount

Double

drugDiluentVolume

Double

drugConcentration

Double

drugDoseUnit

Unsigned integer

drugVolumeUnit

Unsigned integer

Description:
The DrugInformation bus is used to send details for the drug to be administered to the patient. Ideally, this information would be read off the label on the drug vial (or bag or cassette). The drug information includes the name of the drug, the amount of drug to be administered, the volume of the diluent that the drug is dissolved in, the specified drug concentration, and the unit of delivery for the specified drug.
Bus Name:

DrugLibrary

Interface Type:
Input and Output

Signals:

drugID

Unsigned integer

amount

Double

diluentVolume

Double

doseRateTypical

Double

doseRateUpperHardLimit

Double

doseRateUpperSoftLimit

Double

doseRateLowerHardLimit

Double

doseRateLowerSoftLimit

Double

doseRateUnit

Unsigned integer

vtbiTypical

Double

vtbiUpperHardLimit

Double

vtbiUpperSoftLimit

Double

vtbiLowerHardLimit

Double

vtbiLowerSoftLimit

Double

vtbiUnit

Unsigned integer

drugConcentrationTypical

Double

drugConcentrationUpperHardLimit
Double

drugConcentrationUpperSoftLimit
Double

drugConcentrationLowerHardLimit
Double

drugConcentrationLowerSoftLimit
Double
Description:
The Drug library bus transmits typical values along with soft and hard limits for dose parameters. Additional signals may be added to this bus based on the specific format of the drug library being used.
Bus Name:

EnvironmentSensorSignals

Interface Type:
Input

Signals:

isTemperatureOutOfRange

Boolean

isHumidityOutOfRange

Boolean

isAirPressureOutOfRange

Boolean
Description:
The EnvironmentSensorSignals bus consists of boolean flags from various sensors that are used to indicate whether the pump’s operating conditions are out of specification.
Bus Name:

HardwareSensorSignals
Interface Type:
Input
Signals:

isLoggingFailed

Boolean

isWatchDogInterruptDetected

Boolean

isReservoirDoorOpen

Boolean

isBatteryDepleted

Boolean

isBatteryLow

Boolean

isBatteryUnableToCharge

Boolean

isSupplyVoltageOutOfRange

Boolean

isCPUInError

Boolean

isRTCInError

Boolean

isMemoryCorrupted

Boolean

isPumpTooHot

Boolean

isPumpOverheated

Boolean
Description:
The HardwareSensorSignals bus consists of boolean flags from system components that indicate whether the pump’s hardware is operating correctly.

Bus Name:

InfusionSensorSignals

Interface Type:
Input
Signals:

isReservoirEmpty

Boolean

isReservoirLow

Boolean

isOcclusionDetected

Boolean

isInfusionRateTooHigh

Boolean

isInfusionRateTooLow

Boolean

isInfusionRateLessThanKVO

Boolean

isFlowRateNotStable

Boolean

isFlowRateOverPumpCapacity

Boolean

isInfusionPausedLong

Boolean

isInfusionPausedTooLong

Boolean

isAirInLineDetected

Boolean
Description:
The InfusionSensorSignals bus consists of boolean flags used to indicate a failure or anomalous condition during infusion.

Bus Name:

InfusionInstructions
Interface Type:
Output
Signals:

infusionInProgress

Boolean

infusionPaused

Boolean

bolusRequested

Boolean

programmedVTBI

Double

programmedFlowRate

Double
Description:
The InfusionInstructions bus sends control signals to the pump hardware and user interface to administer the infusion.

Bus Name:
InfusionStatus

Interface Type:
Input and Output
Signals:
isBolusInProgress

Boolean

totalVolumeInfused

Double

remainingVolumeInReservoir

Double

Description:
The InfusionStatus bus is used to transmit signals that specify the current status of the ongoing infusion.
Bus Name:

PumpConfigurationsStatus

Interface Type:
Input

Signals:

isPOSTSuccessful

Boolean

isPumpPrimed

Boolean

isAdminSetCheckPassed

Boolean

Description:
The PumpConfigurationsStatus bus is used to indicate the result of the different pump configuration (and startup) checks.
Bus Name:

InfusionParameters

Interface Type:
Input

Signals:
programmedVTBI

Double

programmedDoseRate

Double
Description:
The InfusionParameters bus is used to transmit the infusion parameters, as programmed by the user, from the user interface to the GPCA model.
3. The GPCA Model
3.1. The GPCA Model Definition
The GPCA model is represented as a set of state machines denoting the various states of the infusion pump and the transitions between these states. The transitions are triggered either by an event (external or system-generated), or by evaluating a condition. Formally, the GPCA state machine can be expressed as a quadruple M = (S, , q0, F), where

S = the set of states in the GPCA state machine

 = a transition function

q0 = the initial state for the GPCA state machine

F = the set of final states in the GPCA state machine

The transition function  can be defined as : S  T (2A  S, where T is the set of input triggers. A trigger can either be a user event, e or a condition, c (i.e., T = e  c), and A is the set of output actions associated with the transitions. Each action in turn modifies the value of a variable v  V, where V is the set of variables associated with the GPCA state machine.
3.2. Assumptions

There are two assumptions that determine the way the GPCA state machine is developed:

1. As explained above, two types of triggers may cause the state machine to transition from one state to another:

a. A certain condition (or guard) is satisfied, such as an infusion pump hardware failure, or

b. An action event (or stimulus) from the user is captured.

We assume that transitions caused by conditions always take precedence over those caused by events. In particular, if the state machine enters a specific state, and there are two triggers to the state at the same time, one a condition and the other a user event, the state machine will fire the transition caused by the condition and enter the corresponding successive state. On the other hand, if two or more triggers of the same type are caused at the same time, the state machine will non-deterministically select one of transitions caused by these triggers and enter the corresponding successive state. This assumption clarifies the behavioral semantics underlying the state machine.
2. Any time delay associated with a check performed by the state machine is not noticeable to the user. In other words, such a check will be completed immediately, and no conditions or user events can be captured during the check.

The GPCA model performs two types of checks: checking the user input against the drug library, and checking for pump malfunctions or environmental exceptions. The State Controller implements the former as comparisons of numeric values, and the latter as testing of hardware or environment failure flags. It is assumed that both types of checks can be completed immediately, and no conditions or user events can be triggered during these checks.

3. The set of actions associated with a transition are executed in sequence. Changing the order of actions labeled on a transition will change the semantics of the state machine model.
4. When the State Controller receives data, either from the System Model or from the UI, it assumes that the data is always available and correct. For example, when the State Controller sends the drug library information to the UI, it simply reads corresponding input ports, without performing extra integrity and correctness checking on whatever it reads from these ports. (The elaboration and enforcement of safety requirements on the availability, integrity and correctness of data is one of our primary concerns for future extensions of the GPCA model.)
3.3. State Machine Descriptions
This section explains the structure of the GPCA state controller and alarm detection state machines with the help of diagrams. Definitions for the states, events and conditions used in the structures are given in Section 3.4. For more details about the state machines, please refer to the functional specifications for the GPCA state controller and the alarm detection state machine.
3.3.1. State Controller
Figure 3 illustrates the structure of the State Controller state machine, leaving the sub-machines Check Drug Routine, Infusion Configuration Routine and Infusion Session Sub-Machine unspecified. Figure 4 defines the internal structure of the Infusion Session sub-machine. The basal infusion and bolus operations are further captured in the Infusion sub-machine, as shown in Figure 5. The Drug Check Routine sub machine, shown in Figure 6, lists the steps taken to check whether the loaded drug satisfies with the prescription defined in the drug library. Finally, the Infusion Configuration Routine sub machine, shown in Figure 7, demonstrates the workflow that a user needs to go through in order to prescribe a correct infusion treatment for the patient. The benefit of grouping a certain part of the state machine into a sub-machine is two-fold: Firstly, states and transitions that are isolated and grouped into a conceptual sub-machine together characterize how a task is accomplished by the state machine. For example, states in the Drug Check Routine sub-machine define the set of necessary checks validating the drug loaded in the pump. Decomposed in this manner, the state machine becomes easier to understand and allows readers to focus on certain aspects of the machine. Secondly, once a sub-machine is revised or elaborated, the rest of the state machine remains unchanged, except for its interaction with the sub-machine.

[image: image3.emf]PowerOff

POST

Alrm_POSTFailure

Check Drug

Routine

Infusion Session

Sub Machine

ConfirmPowerOff

E_Confirm

E

_

P

o

w

e

r

B

u

t

t

o

n

Cond_1_1

E

_

P

o

w

e

r

B

u

t

t

o

n

E_PowerButton

E

_

C

a

n

c

e

l

Alrm_LevelOneHardwareFaiure

C

o

n

d

_

1

_

2

E

_

P

o

w

e

r

B

u

t

t

o

n

Infusion Configuration

Routine

POSTDone

E_CheckAdminSet

E_ConfigureInfusionProgram

Cond_2

E_NewInfusion

Level_One_Alarm

Figure 3: The GPCA State Controller
It should be noted that the state controller, no matter which state it may be in, might encounter a hardware failure, which causes the machine to transition to a safe state. We do not explicitly include these failure transitions in the diagrams in order to keep these them uncluttered. The reader can refer to the state machine specifications to establish the safety decision the state machine takes to deal with hardware failures.

Also, for purposes of clarity, we do not include self-loop warning transitions for all states in the diagrams (exceptions to this rule include those transitions that perform checking tasks and transitions for the PowerDown state). Self-loop warning transitions are used to transmit appropriate warning messages to the user interface. Moreover, for the Infusion sub-machine (shown in Figure 5), each state has an implicit self-loop transition, representing that the current bolus has been successfully completed.

[image: image4.emf]Infusion Sub Machine

Alrm_EmptyReservior

Alrm_LevelTwoHardware

Failure

CheckDrug

Alrm_WrongDrug

InfusionPaused

Alrm_TooLongInfusionPause

PausedStopConfirm

InfusionStopped

ConfirmPowerOff

E_PowerButto

n

E_Cancel

E_Cancel

E

_

C

o

n

f

i

r

m

P

a

u

s

e

I

n

f

u

s

i

o

n

E_StopInfusion

Cond_6_1

Level_Two_Alarm

E_StopInfusion

E_StopInfusion

E_ConfirmStopInfusion

E_ClearAlarm

Level_Two_Alarm

Level_Two_Alarm

Cond_6_2

C

o

n

d

_

6

_

3

Cond_6_5

Cond_6_4

E_CheckDrug

E_StopInfusion

E_CheckDrug

E_ClearAlarm

E_StopInfusion

E_ConfirmStopInfusion

CheckAdministrationSet

E

_

N

e

w

I

n

f

u

s

i

o

n

ReadyToStart

Cond_2

E

_

C

a

n

c

e

l

Figure 4: The Infusion Session sub-machine

[image: image5.emf]Infusion_

NormalOperation

Bolus

Request

ChangeRate

Check

New

Rate

Alrm_Unsafe

NewRate

ConfirmStop

ConfirmPowerOff

ConfirmPause

InfusionStopped

Level_Two_Alarm

E

_

B

o

l

u

s

R

e

q

u

e

s

t

C

o

n

d

_

7

_

1

C

o

n

d

_

7

_

2

E_Cancel

E_ConfirmDoseRate

Cond_7_3

Cond_7_4

E_StopInfusion

E_Cancel

E_PauseInfusion

E_ConfirmPauseInfusion

InfusionPaused

Cond_6_2

E_ChangeDoseRate

E_Cancel

E_ConfirmStop

ReadyToStart

Cond_2

Cond_6_4

CheckDrug

E_Cancel

Alrm_LevelTwoHardware

Failure

E_ClearAlarm

E_ChangeDR

E_Cancel

E_PowerButton

E_Cancel

Figure 5: The Infusion sub-machine

[image: image6.emf]CheckDrugType

CheckDoseUnit

Arm_UnknownDrug

Alrm_DoseUnitMismatch

CheckConcentration

Wrn_ConcentrationSoftLimists

Violation

Alrm_ConcentrationHardLimist

sViolation

E

_

C

a

n

c

e

l

E

_

P

o

w

e

r

B

u

t

t

o

n

Cond_3_5

Cond_3_7

Cond_3_8

DisplayPatientProfile

Cond_3_9

C

o

n

d

_

3

_

1

0

C

o

n

d

_

3

_

8

C

o

n

d

_

3

_

6

DisplayDrugInfo

E_CheckDrug

E

_

C

a

n

c

e

l

Confirm Power Off

POSTDone

DisplayVTBI

E_CheckAdminSet

CheckAdministrationSet

Alrm_IncorrectAdministratri

onSetup

CheckPrime

Alrm_PrimeFailure

E_Prime

Cond_3_1

Cond_3_3

C

o

n

d

_

3

_

2

E_CheckAdminSet

C

o

n

d

_

3

_

4

E_CheckDrug

E_ConfirmConcentration

E_ConfigureInfusionProgram

Figure 6: The Check Drug Routine sub-machine

[image: image7.emf]DisplayVTBI

CheckVTBI

Alrm_VTBIHard

LimitsViolation

Cond_4_1

Cond_4_3

ChangeVTBI

ConfirmPowerOff

DisplayPatientProfile

E_ConfigureInfusionProgram

Wrn_VTBISoftLimits

Violation

Cond_4_2

E_ChangeVTBI

E_Cancel

DisplayDoseRate

Alarming / Dose

Rate Out of Bound

Change Dose Rate

DisplaySettings

Check Dose Rate

Wrn_DoseRateSoftLimits

Violation

E

_

P

o

w

e

r

B

u

t

t

o

n

E

_

C

a

n

c

e

l

E_Cancel

E_ConfirmVTBI

E

_

C

o

n

f

i

r

m

V

T

B

I

E_ChangeVTBI

E_ConfirmVTBI

Cond_4_4

Cond_4_5

Cond_4_6 E_ConfirmDoseRate

E_ConfirmDoseRate

E_ChangeDoseRate

E_ConfirmDoseRate

E_ChangeVTBI

E_ChangeDoseRate

ReadyToStart

E_StartInfusion

Cond_2

Cond_5

Infusion_NormalOperation

Figure 7: The Infusion Configuration Routine sub-machine
3.3.2. The Alarm Detection State Machine
Figure 8 shows the structure of the Alarm Detection State Machine. As shown in the figure, the machine consists of two parts - the alarm detecting mechanism and the pump readiness checking component. These two parts correspond to the two primary functions that the Alarm Detection State Machine performs: 1) receiving sensor signals from the system model and deciding the appropriate notifications that should be reported to the state controller when any of these is in error, and 2) upon receiving a request from the state controller to start a new infusion, checking the settings and hardware conditions of the pump to decide whether or not to grant the request.

[image: image8.emf]Alarm Detection

Controller

Pump Ready / Not Ready

Environment Sensor

Signals Input

Pump Hardware

Sensor Signals Input

Infusion Sensor

Signals Input

Level One Alarm

Detection Component

Level Two Alert

Detection Component

Warning Detection

Component

Level One Alarm

Level Two Alert

Warning

Pump Readiness

Checking Component

Start Infusion /

Pause Infusion /

Clear Alarm

Restart Checking

Restart Checking

Restart Checking

Alarm/Alert/Warning

Notifications

Alarm Detection State Machine

Figure 8: the Alarm Detection State Machine
Based on the hierarchy of alarm severity levels, the alarm detecting mechanism in the state machine designates three parallel sub-machines to detect occurrences of alarms at each severity level. These three sub-machines, viz., the Level One Alarm Detection component, the Level Two Alert Detection component and the Warning Detection Component, check failure flags (signals) in a round-robin fashion, and send a notification event to the Alarm Detection Controller sub-machine whenever any of these flags is true. Upon receiving notification events from the three detection sub-machines, the Alarm Detection Controller selects the one with the highest priority and reports it to the state controller (by assigning the output ErrCond with the corresponding alarm condition index, and optionally sending out E_Warning events). The values associated with the various failure conditions are listed in Table 2

The Pump Readiness Checking Component does not interact directly with the other four sub-machines. Instead, it keeps detecting requests from the state controller to start a new infusion, and does not grant such requests unless the following conditions hold true:
1) the drug reservoir is not empty,

2) the door of the drug reservoir is not open, and

3) the programmed flow rate for the pending infusion does not exceed the pump’s capacity.
In addition to manipulating notification events, the Alarm Detection Controller also enforces the three detection sub-machines to restart upon receiving such restart commands (E_Restart) from the state controller. In order to report failures and anomalies precisely, the Alarm Detection Machine needs to receive the signals O_InfusionInProgres and O_InfusionPaused output from the state controller, which reflect the status of the current ongoing infusion. For example, if the flag representing the current infusion has been paused too long is set positive by mistake, the state machine checks the value of O_InfusionPaused and inspects whether the current infusion is being really paused. If O_InfusionPaused is false, indicating that the infusion is not paused, the state machine simply ignores the false alarm.
Table 2: Indices used for Pump Failure Conditions

	Failures and Anomalies
	Failure Condition Index

	Power Supply failure
	1

	Real Time Clock failures
	2

	CPU failures
	3

	Memory failures
	4

	The Pump is extremely hot
	5

	Failures that watchdog detects
	6

	Drug reservoir door open
	7

	Drug reservoir empty
	8

	Occlusion
	9

	Pump flow rate higher than a safe threshold
	10

	Pump flow rate lower than a safe threshold
	11

	Pump flow rate less than preset KVO rate
	12

	Pump flow rate greater than maximum rate allowed for pump
	13

	Current infusion paused longer than a predefined duration
	14

	Air-in-line embolism
	15

	Pump flow rate variance out of range
	16

	Drug reservoir low
	17

	Infusion paused for too long
	18

	Pump logging error
	19

	Battery life remaining too low
	20

	Battery charging problem
	21

	Power supply voltage out of range
	22

	Pump too hot
	23

	Ambient temperature out range
	24

	Ambient humidity out range
	25

	Ambient air pressure out range
	26

Note – different design implementations may drive different hierarchy settings than presented in this table. This table can be modified or extended for different implementations of the Alarm Detecting component as desired.
3.4. Definitions
Each state in the state controller and all of its sub-machines represents either a common operation that typical PCA pumps might perform, or a configuration that typical PCA pumps might be in during operation. Table 3 summarizes all the states referred to in the GPCA state controller and its sub-machines. Conditions used to enable state machine transitions are collectively explained in Table 4. Table 5 establishes user’s actions, occurrences of failures and anomaly event triggers. Lastly, Table 6 enumerates all variables and functions referenced in the functional specifications of the state machine.
Table 3: States defined in the GPCA State Machines

	States
	Definitions

	States in the primary machine

	PowerDown
	The initial state of the entire state machine, indicating that the pump is powered down.

	POST
	State indicating that the pump is performing the Power On Self Test (POST).

	Alrm_POSTFailure
	State indicating that the pump has failed POST check.

	Alrm_LevelOneHardwareFailure
	State indicating that the pump has encountered a critical failure, and has entered a safe state.

	ConfirmPowerOff
	State indicating that the pump has received a Power Down requests from the user, and is waiting for the user to confirm such a request.

	
	

	States in Check Drug Routine

	CheckAdministrationSet
	State during which the pump performs checks on the administration set connected to it (this includes the IV set, tubing, drug reservoir, etc.)

	Alrm_ IncorrectAdministrationSetup
	State indicating that the pump has failed one or more of the administration set checks.

	Check Prime
	State that simulates the pump priming process. During this state, the prime_pump function is invoked to check whether the pump has been successfully primed or not.

	Alrm_PrimeFailure
	State indicating that the priming process has failed.

	DisplayDrugInfo
	State in which the pump displays the information for the patient currently connected to the pump, and the fluid that is currently loaded in the reservoir.

	CheckDrugType
	State in which the pump checks whether the drug in the reservoir is consistent with the patient’s prescription.

	Alrm_ UnknownDrug
	State indicating that the drug loaded in the reservoir (or defined in the patient record) cannot be found in the drug library.

	CheckDoseUnit
	State in which the pump checks whether the dose unit for the drug is consistent with that specified the drug library.

	Alrm_DoseUnitMismatch
	State indicating that the drug in the reservoir fails the check performed in state Check Dose Unit.

	CheckConcentration
	State in which the pump checks whether the drug in the reservoir (as specified in the patient record) has the same concentration as defined in the drug library.

	Wrn_ConcentrationSoftLimitsViolation
	State indicating that the concentration of the drug in the reservoir fluid violates the soft concentration limits suggested by the drug library.

	Alrm_ConcentrationHardLimitsViolation
	State indicating that the concentration of the drug in the reservoir fluid violates the hard concentration limits suggested by the drug library.

	DisplayPatientProfile
	State that displays the information about the patient connected to the pump and the drug loaded in the pump.

	
	

	States in Infusion Configuration Routine

	DisplayVTBI
	State in which the pump displays the suggested VTBI (as per the patient’s prescription record) for the next infusion, and waits for the user to confirm or modify.

	ChangeVTBI
	State indicating that the user has selected to modify the value of suggested VTBI for the next infusion.

	CheckVTBI
	State during which the VTBI input by the user is checked against the drug library.

	Alrm_VTBIHardLimitsViolation
	State indicating that the VTBI input by the user violates hard limits defined in the drug library.

	Wrn_VTBISoftLimitsViolation
	State indicating that the VTBI input by the user violates soft limits defined in the drug library.

	DisplayDoseRate
	State in which the pump displays the suggested infusion rate (as per the patient’s prescription record) for the next infusion, and waits for the user to confirm or modify.

	ChangeDoseRate
	State indicating that the user has selected to modify the value of the suggested infusion rate for the next infusion.

	CheckDoseRate
	State during which the infusion rate input by the user is checked against the drug library.

	Alrm_DoseRateHardLimitsViolation
	State indicating that the dose rate input by the user violates hard limits defined in the drug library.

	Wrn_DoseRateSoftLimitsViolation
	State indicating that the dose rate input by the user violates soft limits defined in the drug library.

	DisplaySettings
	State in which the pump displays settings for the next infusion, and waits for the user to confirm or modify.

	ReadyToStart
	State used to check the readiness of the device after the infusion program has been set, in order to ensure that the infusion task will be started safely.

	
	

	States in the infusion session sub machine

	InfusionStopped
	State indicating that the infusion process has been terminated.

	Alrm_LevelTwoHardwareFailure
	State indicating that the pump is forced to enter into a safe state when critical failures that can affect the safety and effectiveness of infusion are detected.

	Alrm_EmptyReservoir
	State indicating that the volume of the drug reservoir is depleted (i.e., the fluid contained in the reservoir is below a preset safe level).

	CheckDrug
	If the drug reservoir is depleted during infusion, the pump signals an Empty Reservoir alarm. At this point, the reservoir needs to be reloaded with the drug before infusion can be resumed. The Check Drug state checks to ensure that the correct drug has been reloaded in the reservoir. The check includes verifying the type, dose unit and concentration of the reloaded drug against the drug library.

	Alrm_ WrongDrug
	State indicating that the reloaded fluid fails the check performed in state Check Drug.

	PausedStopConfirm
	State indicating that the user requests to stop a paused infusion process.

	InfusionPaused
	State indicating that the ongoing infusion process is paused.

	Alrm_TooLongInfusionPause
	State indicating that the current infusion process has been paused for more than a preset interval.

	
	

	States in the infusion sub machine

	Infusion_ NormalOperation
	State indicating that the pump delivers the specified drug to the patient at the rate programmed by the user.

	BolusRequest
	State indicating that a bolus request has been received from the patient during the ongoing infusion process.

	ConfirmPause
	State indicating that the user confirms the request to pause the ongoing infusion process.

	ConfirmStop
	State indicating that the user confirms the request to stop the ongoing infusion process.

	ChangeRate
	State during which the user changes the infusion rate of the ongoing infusion process.

	CheckNewRate
	State during which the new infusion rate input by the user (during the execution of an infusion process) is checked against the drug library.

	Alrm_UnsafeNewRate
	State indicating that the new infusion rate input by the user during the execution of an infusion process is out of range as prescribed by the drug library.

Note: Currently, we do not consider the mismatch between a patient and his label, which should be checked manually by the user.
Table 4: Conditions Used in the State Machine

	Conditions
	Definitions

	
	Cond_1_1
	POST passed

	
	Cond_1_2
	POST failed

	Cond_2
	The pump is functioning properly and all necessary parts are ready for the infusion to start

	
	Cond_3_1
	Administration Check failed

	
	Cond_3_2
	Administration Check passed

	
	Cond_3_3
	Prime Check failed

	
	Cond_3_4
	Prime Check passed

	
	Cond_3_5
	The drug label does not reflect correctly and precisely the drug in the reservoir, or the drug is not prescribed by the drug library

	
	Cond_3_6
	The drug label reflects correctly and precisely the drug in the reservoir

	
	Cond_3_7
	The drug dose unit read by the barcode reader does not match that prescribed by the drug library

	
	Cond_3_8
	The drug dose unit read by the barcode reader matches that prescribed by the drug library

	
	Cond_3_9
	The drug concentration read by the barcode reader violates soft limits suggested by the drug library

	
	Cond_3_10
	The drug concentration read by the barcode reader violates hard limits suggested by the drug library

	
	Cond_3_11
	The drug concentration read by the barcode reader complies with that prescribed by the drug library

	
	Cond_4_1
	The value of VTBI provided by the user violates hard limits specified by the drug library

	
	Cond_4_2
	The value of VTBI provided by the user violates soft limits specified by the drug library

	
	Cond_4_3
	The VTBI provided by the user complies with that prescribed by the drug library

	
	Cond_4_4
	The value of infusion dose rate provided by the user violates hard limits specified by the drug library

	
	Cond_4_5
	The value of infusion dose rate provided by the user violates soft limits specified by the drug library

	
	Cond_4_6
	The infusion dose rate provided by the user complies with that prescribed by the drug library

	Cond_5
	The pump is not functioning properly, or errors are detected in the hardware, preventing the programmed infusion task from being started

	
	Cond_6_1
	The current infusion session has been paused longer than a preset safe limit

	
	Cond_6_2
	The current infusion process has completed successfully (i.e., VTBI remaining = 0)

	
	Cond_6_3
	An infusion error Empty Reservoir is detected during the ongoing infusion process

	
	Cond_6_4
	The reloaded drug matches the drug expected by the current infusion session

	
	Cond_6_5
	The reloaded drug does not match the drug expected by the current infusion session

	
	Cond_7_1
	The pump’s delivery mechanism decides to grant the bolus request

	
	Cond_7_2
	The pump’s delivery mechanism denies the bolus request

	
	Cond_7_3

	The new infusion rate that the user inputs during the current infusion violates either soft or hard limits suggested by the drug library

	
	Cond_7_4

	The new infusion rate that the users input during the current infusion satisfies both soft and hard limits suggested by the drug library

	
	Level_One_Alarm
	0 < ErrCond < 7

	
	Level_Two_Alarm
	7 <= ErrCond < 16

Table 5: Events Used in the State Machine

	Actions simulating the user’s actions

	Events
	User Action

	E_PowerButton
	Pressing of the power button

	E_Prime
	Request to prime the pump

	E_CheckAdminSet
	Request for an administration set check

	E_CheckDrug
	Request to check the loaded drug against the prescription

	E_ConfigureInfusionProgram
	The action of programming infusion parameters

	E_ConfirmConcentration
	The action of accepting the concentration of the loaded drug

	E_ConfirmVTBI
	The action of accepting the currently programmed VTBI

	E_ConfirmDoseRate
	The action of accepting the currently programmed dose rate

	E_NewInfusion
	Request to start a new infusion

	E_StartInfusion
	The action of accepting the current programmed parameters and starting the infusion

	E_StopInfusion
	Request to stop the ongoing infusion

	E_ConfirmStopInfusion
	The action of confirming the request to stop infusion

	E_PauseInfusion
	Request to pause the ongoing infusion

	E_ConfirmPauseInfusion
	The action of confirming the request to pause infusion

	E_ChangeDoseRate
	Request to change the current dose rate

	E_ChangeVTBI
	Request to change the current VTBI

	E_ClearAlarm
	The action of clearing the current alarm/alert notification and to resume infusion

	E_ RequestBolus
	Request for a bolus dose

	E_ConfirmPowerDown
	The action of confirming the request to power down the pump

	E_Cancel
	The action of cancelling the user’s previous action

	Events from the Alarm Detecting component

	E_Warning
	Indication that a warning condition has been detected

Table 6: Variables Input / Output from the Software Model
	Variable
	Data Type
	Scope
	Definition

	The State Controller State Machine

	previous_state
	Unsigned integer
	Local
	The variable recording the state that the state machine resides in before it transitions to the current state.

	O_InfusionInProgress*
	Unsigned integer
	Output
	The flag, which when set to true, indicates that the user instructs the current infusion to proceed

	O_InfusionPaused*
	Unsigned integer
	Output
	The flag, which when set to true, indicates that the user instructs the current infusion to pause

	O_BolusRequested*
	Unsigned integer
	Output
	The flag, which when set to true, indicates that the user request a bolus infusion to be administrated

	O_AlarmCond
	Unsigned integer
	Output
	Used to transmits the alarm condition to the UI

	O_CurrentState
	Unsigned integer
	Output
	Used to indicate the state that the state machine is currently residing in

	O_ProgrammedVTBI*
	Double
	Output
	Used to transmit the programmed VTBI to the system model

	O_ProgrammedFlowRate*
	Double
	Output
	Used to transmit the programmed dose rate to the system model

	O_DrugLibInfo
	DrugLibrary Bus
	Output
	Used to transmit drug library information to the UI

	O_DrugInfo
	DrugInformation Bus
	Output
	Used to transmit the drug label information to the UI

	O_PatientInfo
	PatientInformation Bus
	Output
	Used to transmit the patient information to the UI

	bolusing
	Unsigned integer
	Local
	A flag indicating whether a bolus infusion is underway

	drugLibInfo
	DrugLibrary Bus
	Input from system model
	Drug library information received from the drug library component in the system model

	infuParameters
	InfusionParameters Bus
	Input from UI
	The parameters that UI inputs for the pending infusion session

	infuStatus
	InfusionStatus Bus
	Input from system model
	Information regarding the status of the current infusion

	pumpConfigData
	PumpConfigurationsStatus Bus
	Input from system model
	Information on the pump’s configuration settings

	ErrCond
	Unsigned integer
	Input from Alarm Detection Machine
	Assigned with the ErrCond output from the Alarm Detection State Machine

	
	
	
	

	The Alarm Detection State Machine

	envSenData
	EnvironmentSensorSignals Bus
	Input from the system model
	Information on environmental conditions that the system model inputs

	hardwareSenData
	HardwareSensorSignals Bus
	Input from the system model
	Information on the hardware status that the system model inputs

	infuSenData
	InfusionSensorSignals
	Input from the system model
	Signals related to infusion that pump sensors will detect

	O_InfusionInProgress
	Unsigned integer
	Input from the State Controller
	Assigned with the O_InfusionInProgress output from the State Controller

	O_InfusionPaused
	Unsigned integer
	Input from the State Controller
	Assigned with the O_InfusionInProgress output from the State Controller

	L1Cond
	Unsigned integer
	Local
	The latest Level One alarm detected

	L2Cond
	Unsigned integer
	Local
	The latest Level Two alert detected

	WrnCond
	Unsigned integer
	Local
	The latest warning condition detected

	ErrCond
	Unsigned integer
	Output to the State Controller
	The latest and severest failure detected

*: the five variables marked with * above can be combined into a single output with InfusionInstructions Bus data type.
4. An Example Implementation of an Extended GPCA Model

As explained in Section 2, the GPCA model can be extended by providing additional components that interface with the base model. In this section, we illustrate this concept by providing example implementations for a user interface and (a few) system components.
4.1. Implementation of a User Interface
4.1.1. User Interface Overview

Figure 9 shows a screenshot of a graphical user interface (GUI) for the Generic PCA (GPCA) pump model, as implemented in the GPCA model. The GUI consists of the following components:

· A Power button, to power up/power down the pump

· Two soft buttons, to navigate through the GPCA menus

· Two hard buttons (the up button and down button) used to adjust the dose parameters (i.e., the Volume to be Infused and Dose rate)

· A message console, used to prompt the caregiver, display warnings and error messages, and display dose settings

· A settings console, used to display the input dose parameters

· A Bolus request button, used to request a bolus dose when infusing

[image: image9.png]I =1 < |

Pump Cortrol

Change Setings:

Display.

250 *

Please use the up and down Butans to acjust the volume of i to be
infusect When done, press the Confirm Btonto set the new value.

ALARM) Serious error hias been detected nthe system watchog. The

ongoing infusion (f any) has heen stopped automatically. Please power
off the pump and clear the error

Cortral uttons:

Execution Panel

(@moﬂw

Power

’7 @ Power onoft

Bolus

Bolus Request Button

Figure 9: A screenshot of the GPCA pump GUI

4.1.2. Inputs and Output Events

The inputs to the GUI are the current state in the state machine, data from the patient information file and drug library. The GUI determines the current configuration to be displayed based on the value of the current state in the GPCA state machine, and updates the display and settings consoles accordingly.

The outputs of the GUI (and the correspondingly, the s-function) are user-generated events produced through various user actions (typically button presses). These actions are captured by setting bits in a 21-bit array, with each bit used corresponding to a particular event. The event is generated when the corresponding bit is set in this array. The complete list of user-generated events comprises of the following:

1. Start/Stop Simulation

2. Power button

3. Start New Infusion

4. Check Administration Set

5. Prime pump

6. Check Drug

7. Configure Infusion Program

8. Confirm Concentration

9. Confirm Dose Rate

10. Confirm VTBI

11. Start Infusion

12. Change Dose Rate

13. Change VTBI

14. Pause Infusion

15. Confirm Pause Infusion

16. Stop Infusion

17. Confirm Stop Infusion

18. Request Bolus

19. Clear Alarm

20. Confirm Power Down

21. Cancel

Abstracting the user events in this manner (classified as the 21 distinct event types) allows the GUI to be configurable and easy-to-change. The current GUI is just a (simple) example of a user interface for the GPCA pump. One can replace the current UI with a custom user interface consisting of, for instance, a keypad rather than the up and down buttons. As long as the events generated through the new user interface are consistent with those defined in the 21-bit array, no other modifications need to be made, and the model should function as designed.

4.1.3. Implementation Details

The GUI is implemented in the GPCA pump model as a level 1 s-function. The s-function in turn uses a Matlab m-file implementation of an interactive application developed in GUIDE. The m-file implementation consists of the GPCA_UI function that is responsible for maintaining the various configurations for the user interface. During initialization (done via OpeningFcn), the GPCA_UI initializes variables associated with the handles structure, and the global event vector GOutputEvents. User events are communicated to the GPCA state machine using a 21-bit vector (GOutputEvents), with each bit representing a user action.

The setConfiguration function is invoked by the s-function every time a user event is generated. The function essentially consists of a switch statement on the current state as maintained by the GPCA state machine. Based on the value of the GCurrentState variable, the setConfiguration function determines the appropriate configuration for the UI and invokes the corresponding function for that state.

Each button in the UI is associated with a callback function that is invoked when the button is pressed (by the user). The callback functions are mainly responsible for setting the appropriate bits in the event vector GOutputEvents, which in turn generates a corresponding event for the GPCA state machine.

The configuration callback functions are also responsible for passing console messages to the GPCA UI. The messages to be displayed in the UI displayConsole are maintained as an array of strings. Since Stateflow does not support the string data type, messages to be displayed in the message console are passed to the user interface as indices in a message array. The GUI looks up the string for the index passed to it, and displays the corresponding message in the console. Values in the settings console are calculated individually and passed to the settingsConsole.
4.1.3.1. The Dirty Flag
In order to disable UI components during state transitions, a “dirty” flag is used to indicate that the GPCA Stateflow model is transitioning from one state to the next. The UI is modified only when this flag is set to on. The flag is set in the s-function during mdlUpdate, before a call to setConfigFcn, and reset after the function has executed. Using the dirty flag in this manner ensures that the user cannot trigger a new event through the UI while a previous event is being handled.

4.1.3.2. Simulation Mode
A Simulation button is provided in the GUI panel for convenience to start and stop the simulations from within the UI itself. The simulation button has no relation to the pump user interface, and is simply used for demo/simulation purposes. If need be, this button may be hidden or removed.

Note: If the simulation panel is closed without first stopping the simulation, Matlab displays an error message “Error in 'StateChanger2_mod/S-Function' while executing M-File S-function 'GPCA_UI_SFUN' (H must be the handle to a figure or figure descendent”. This is because the Stateflow module is expecting an input from the GUI panel, but the input cannot be found because the panel has been closed. To avoid this message, always terminate the simulation gracefully, either using the Simulation on/off button on the UI panel, or using the stop simulation icon on the Simulink interface.

4.1.4. List of Variables

A number of local and global variables are used by the example user interface. These include global variables, used to communicate data between the GPCA state model and the user interface, handles associated with the GUI graphics, and local variables maintained by the GUI. The different categories of these variables are listed below.

4.1.4.1. Global Variables

1. GOutputEvents – This is a 21-bit event vector used to indicate the various button press events triggered by the user

2. GProgrammedVTBI – This is used to get and set the value of the programmed VTBI in the GUI

3. GProgrammedDoseRate – This is used to get and set the value of the programmed dose rate in the GUI

4.1.4.2. User Interface Objects

Handles are created for each of the objects created on the GUI. These include the various buttons and console panels, including:

1. simulationButton – A handle to the simulation button on the GUI screen

2. powerButton – A handle to the power button on the GUI screen

3. button1 – A handle to the soft button 1 on the GUI screen

4. button2 – A handle to the soft button 2 on the GUI screen

5. incButton – A handle to the increment button on the GUI screen

6. decButton – A handle to the decrement button on the GUI screen

7. doseRequestButton – A handle to the bolus request button on the GUI screen

8. settingsConsole – A handle to the settings console on the GUI screen

9. displayConsole – A handle to the display console on the GUI screen

Each of the buttons has a corresponding callback function, which is invoked when the button is pressed by the user.

4.1.4.3. User-defined handles

1. GCurrState – The current state as maintained by the GPCA state machine model

2. mdl – The (state machine) model associated with the user interface s-function

3. GVTBIUH – The upper hard limit for VTBI (from the drug library)

4. GVTBIUS – The upper soft limit for VTBI (from the drug library)

5. GVTBITypical – The typical value for VTBI (from the drug library)

6. GVTBILS – The lower soft limit for VTBI (from the drug library)

7. GVTBILH – The lower hard limit for VTBI (from the drug library)

8. GVTBIUnit – The VTBI unit (from the drug library)

9. GDRUH – The upper hard limit for dose rate (from the drug library)

10. GDRUS – The upper soft limit for dose rate (from the drug library)

11. GDRTypical – The typical value for dose rate (from the drug library)

12. GDRLS – The lower soft limit for dose rate (from the drug library)

13. GDRLH – The lower hard limit for dose rate (from the drug library)

14. GDrugDoseUnit – The dose rate unit (from the drug library)

15. GDrugID – The drug id (from the drug library)

16. GDrugConc – The prescribed drug concentration (from the drug library)

17. GDrugAmount – The amount of the drug to be administered (from the drug library)

18. GDrugDilVol – The diluent volume to be used in the infusate (from the drug library)

19. GCurrVTBI – The current volume of the drug infused thus far

20. GRemainVol – The total volume of drug remaining in the drug reservoir

21. GPatientID – The name/id of the patient (from the patient record)

22. GPatientAge – The age of the patient (from the patient record)

23. GPatientGender – The gender of the patient (from the patient record)

24. GPatientWeight – The weight of the patient (from the patient record)

4.2. System Component Models
As part of the GPCA extension, we have implemented example system components interfaced to the GPCA model. These components, implemented in Simulink, define the system model components and the output interface provided to the GPCA model. Table 7 identifies the components, the names of the signals they send to the GPCA model and the corresponding data types. Out of these components, example Simulink models have been implemented for the DrugBarcodeReader, PatientBarcodeReader and DrugLibraryReader components.

Table 7: Component and Output Interface Definition of System Model

	Source Component
	Signal Name
	Type

	DrugBarcodeReader
	Drug Name
	Unsigned integer

	
	Drug Concentration
	Double

	
	Drug Dose Units
	Unsigned integer

	
	Drug Dose Amount
	Double

	
	Diluent Volume
	Double

	
	Drug Volume Unit
	Unsigned integer

	
	
	

	PatientBarcodeReader
	Patient Id
	Unsigned integer

	
	Patient Age
	Unsigned integer

	
	Patient Gender
	Unsigned integer

	
	Patient Weight
	Unsigned integer

	
	
	

	DrugLibraryReader
	Drug Name
	Unsigned integer

	
	Drug Location
	Unsigned integer

	
	Dose Unit
	Unsigned integer

	
	Volume Unit
	Unsigned integer

	
	Amount
	Double

	
	Concentration Lower Soft
	Double

	
	Concentration Lower Hard
	Double

	
	Concentration Typical
	Double

	
	Concentration Upper Hard
	Double

	
	Concentration Upper Soft
	Double

	
	VTBI Lower Soft
	Double

	
	VTBI Lower Hard
	Double

	
	VTBI Typical
	Double

	
	VTBI Upper Hard
	Double

	
	VTBI Upper Soft
	Double

	
	Dose Rate Lower Soft
	Double

	
	Dose Rate Lower Hard
	Double

	
	Dose Rate Typical
	Double

	
	Dose Rate Upper Hard
	Double

	
	Dose Rate Upper Soft
	Double

	
	BolusVolumeTypical
	Double

	
	BolusTimeTypical
	Unsigned integer

	
	
	

	Pump Controller
	WatchDogAlarm
	Boolean

	
	RTC Alarm
	Boolean

	
	CPU Alarm
	Boolean

	
	Memory Corruption Alarm
	Boolean

	
	Bolus In Progress
	Boolean

	
	Air In Line Alarm
	Boolean

	
	Occlusion Alarm
	Boolean

	
	Flow Rate Above Pump Capacity Alarm
	Boolean

	
	Infusion Paused Warning
	Boolean

	
	Infusion Paused too Long Alarm
	Boolean

	
	Total Volume Infused
	Double

	
	Door Open Alarm
	Boolean

	
	POSTSuccess
	Boolean

	
	PumpPrimed
	Boolean

	
	AdminSetCheckPass
	Boolean

	
	
	

	Flow Meter Controller
	Flow Rate Variance Warning
	Boolean

	
	Overinfusion Alarm
	Boolean

	
	Underinfusion Alarm
	Boolean

	
	Flow Rate Less than KVO Alarm
	Boolean

	
	
	

	Drug Reservoir Controller
	Low Volume Warning
	Boolean

	
	Depleted Volume Alarm
	Boolean

	
	Remaining Volume In Reservoir
	Double

	
	
	

	Power Unit Controller
	Battery Charging Malfunction Alarm
	Boolean

	
	Low Battery Warning
	Boolean

	
	Depleted Battery Alarm
	Boolean

	
	On Battery Power Alert
	Boolean

	
	Supply Voltage Out of Range Alarm
	Boolean

	
	
	

	Environmental Sensor Controller
	Temperate Out of Range Alarm
	Boolean

	
	Pressure Out of Range Alarm
	Boolean

	
	Humidity Out of Range Alarm
	Boolean

	
	
	

	Log File Controller
	Log File Error
	Boolean

4.2.1. Component Descriptions

This section describes each of the system components interfaced with the GPCA model.

4.2.1.1. Component PatientBarcodeReader

The PatientBarcodeReader reads the patient barcode reader and obtains patient information, viz., 1) patient id, 2) patient age, 3) patient gender and 4) patient weight 5) the drug-name to be administered to patient and 6) the location where the drug is to be administered (for example operating room, emergency room, ambulatory, home-care). This information is then communicated to the GPCA model so that it may be displayed on the user interface. The drug-name and location is as an index to search the drug library in order to obtain safe values and limits for infusion parameters for the particular drug-name and location. Finally, the name (or id) of the drug to be administered is checked against the drug name obtained from the DrugBarcodeReader to check whether the patient is actually being given the drug he is supposed to have. This check is done inside the Software Model.
4.2.1.2. Component DrugLibraryReader

The Drug Library can be thought of as a lookup table that, given a drug name and a location, provides typical and safe limits of different infusion parameters. The drug library system component assumes the following structure for each table element:
Table 8: Data Elements of a Drug Library Entry

	Element Name
	Explanation

	Drug Name
	Name of the drug

	Location
	Context of drug application

	Dose Rate Unit
	The unit of drug dose (for example milliliters/hour)

	VTBI Unit
	The unit of VTBI (for example milliliter)

	Amount
	The weight of the drug dissolved in the diluent

	Concentration Lower Soft
	Lower soft limit of drug concentration

	Concentration Lower Hard
	Lower hard limit of drug concentration

	Concentration Typical
	Typical drug concentration

	Concentration Upper Soft
	Upper soft limit of drug concentration

	Concentration Upper Hard
	Upper hard limit of drug concentration

	VTBI Lower Soft
	Lower soft limit of drug volume to be infused

	VTBI Lower Hard
	Lower hard limit of drug volume to be infused

	VTBI Typical
	Typical drug volume to be infused

	VTBI Upper Soft
	Upper soft limit of drug volume to be infused

	VTBI Upper Hard
	Upper hard limit of drug volume to be infused

	Dose Rate Lower Soft
	Lower soft limit of drug dose rate

	Dose Rate Lower Hard
	Lower hard limit of drug dose rate

	Dose Rate Typical
	Typical drug dose rate

	Dose Rate Upper Soft
	Upper soft limit of drug dose rate

	Dose Rate Upper Hard
	Upper hard limit of drug dose rate

	Bolus Typical
	Typical Value of Bolus Volume

	Bolus Time Typical
	Typical Time over which Bolus is applied

For each of the three infusion parameters – concentration, VTBI and dose rate – the drug library defines hard and soft upper and lower limits (a soft limit is a recommended limit and a hard limit is a restriction which if violated would lead to an unsafe infusion condition). In addition to the limits, typical values of the infusion parameters are provided.

The input to the DrugLibraryReader consists of the index obtained from the PatientBarcodeReader. The DrugLibraryReader uses this index and finds the corresponding entry that corresponds to that index.

The VTBI and dose rate are provided to the GPCA model through the user-interface. These are then compared to the soft and hard limits defined for the (drug name, location) index in the DrugLibraryReader. If a soft limit is violated, a warning is given. A hard limit violation however leads to an alarm. If the user-interface provides no value for VTBI and dose rate, then the typical values as defined by the drug library are used. The drug concentration is supplied to the GPCA model by the DrugBarcodeReader. This value is then checked against the lower soft and hard limits as defined by the library and a warning or alarm is sounded if appropriate.

4.2.1.3. Component DrugBarcodeReader

The DrugBarcodeReader reads the drug label barcode and obtains the following information: 1) drug name 2) concentration 3) dose unit 4) volume unit 5) amount 6) diluent volume. These values are sent to the GPCA model which then displays these on the user interface. The concentration obtained is checked against hard and soft limits as defined by the drug library and the drug name is checked against the drug name obtained from the PatientBarcodeReader. A mismatch between the two indicates that a drug not meant for the patient will be used if infusion is allowed to start with the currently loaded drug. Consequently, an alarm is sounded.

4.2.1.4. Component PumpController

Table 9 specifies the output interface for the Pump Controller, i.e., the signals it provides to the GPCA model. The Pump Controller provides an input interface to the GPCA model, i.e., the signals it expects from the GPCA model.
Table 9: Output Interface for the Pump Controller Compnent

	Signal Name
	Type
	Explanation

	Infusion In Progress
	Boolean
	Signal =1 as long as infusion session is in progress

	Bolus Requested
	Boolean
	Denotes the request for a bolus. If request is granted, pump controller sets output signal Bolus In Progress=1. After bolus has been administered, it makes Bolus In Progress=0. Only after that is a new Bolus Requested signal accepted.

	Infusion Paused
	Boolean
	Signal=1 as long as infusion is paused

	Programmed Flow Rate
	Double
	The programmed flow rate

During the startup phase of the GPCA, the pump controller is responsible for reporting the status of the Power-On-Self-Test (POST), the priming status of the pump and the administration check status. The pump controller is responsible for periodic checks of the system hardware and raises alarms if during pump operation the watchdog, the CPU, the memory or the real time clock becomes corrupted or if the drug reservoir door is open.

During infusion, the pump controller monitors for critical events like air embolisms and occlusions and checks if the programmed flow rate is within the pump’s capacity of delivery. If not, an alarm is sounded. The pump controller sounds a warning if the infusion is paused beyond a certain time and sounds an alarm if it remains paused for even a greater unit of time.

Computationally, the pump controller has two responsibilities:

· to keep track of the total volume of fluid infused in an infusion session, and

· to regulate the desired flow-rate based on the following conditions:

· if infusion is not in progress, flow rate = 0

· if infusion is in progress and infusion is paused, flow rate = Keep Vein Open (KVO), a constant minimum rate

· if infusion is in progress and infusion is not paused, and bolus is active, flow rate = bolus rate

· if infusion is in progress and infusion is not paused, and bolus is inactive, flow rate = programmed flow rate

· if infusion is in progress and infusion is not paused, and bolus is inactive and programmed flow rate > pump flow capacity, its flow rate = pump flow capacity

4.2.1.5. Component Flow Meter Controller

The flow meter controller component assumes a flow meter sensor attached to the pump to measure the actual flow rate output by the pump. The flow meter controller calculates the deviation of the actual flow rate from the desired flow rate. If they differ by more than a certain amount, a warning is sounded. If the actual (measured) flow rate is greater than the desired flow by a certain amount, an Overinfusion alarm is sounded. On the other hand, if the actual flow rate is lesser than the desired flow rate by a certain amount, an Underinfusion alarm is sounded. The flow meter controller also sounds an alarm if the flow rate goes below that of KVO even though the infusion is not paused.

4.2.1.6. Component Drug Reservoir Controller

This component returns the amount of fluid left in the drug reservoir. If the level goes below a threshold it sounds a warning. If it drops even further (e.g. less than 2% of total volume) then another alarm is sounded.

4.2.1.7. Component Power Unit Controller

This component is in charge of the power unit. It sounds an alarm if the supply voltage does not correspond to established power ratings. If a battery is present, the controller warns if the charge level falls below a certain level and sounds an alarm if it is depleted or if the battery is not charging properly. The power unit also alerts the GPCA model if the power is being drawn from the battery.

4.2.1.8. Component Environmental Sensor Controller

This component senses pump operation parameters like temperature, pressure and humidity and sounds alarms if they lie outside the operational range of the device.

4.2.1.9. Component Log File Controller

This controller controls access to the log-file and sends a Log File Error message if the Log File is full.
4.2.2. S-Function Implementations
The PatientBarcodeReader, DrugLibraryReader and DrugBarcodeReader are implemented as Simulink s-functions. These s-functions are generated through the “legacy code tool” (LCT) that is provided as part of the Matlab tool suite. The LCT tool takes as its input a Matlab script file (.m file) that contains certain configuration information and automatically generates the s-function. The configuration information that is needed for the LCT tool is as follows:

· Output function specification: The input-output specification of the C function that is to be invoked at every simulation step (update function)

· Start function specification: The name of a C function that is to be invoked only once at the start (initialization function)

· Terminate function specification: The name of a C function that is to be invoked only once at simulation termination (finalization function)

· Location of Header Files: The names of the header files (.h) used by the C functions.

· Location of Source Files: The names of the source files (.c) where the update, initialization and finalization functions reside.

· S-function name: The name of the s-function to be generated.

Note: When simulating the s-functions run, one needs to disable Matlab’s disable Signal Storage Reuse option. Not disabling this option can lead to the s-functions reading beyond the end of the file. The Signal Storage Reuse option can be disabled through the Optimization tab in the Simulation Configuration menu.
5. Future Work

The concept behind the GPCA model can be generalized to build a model for a generic infusion pump (GIP). A principal challenge in defining specifications for such a generic model is to aggregate the features of the many different types of infusion pumps, and isolate the base elements that are common across all of them. The future work lies in using the insights gleaned so far while constructing the GPCA model to create the specifications of a GIP model. This GIP model can then be leveraged to create more generalized models for specific pump types. One such avenue would be to develop a model for a generic insulin pump.
Message console

Down Button

Up Button

Soft Button 1

Soft Button 2

Power Button

Settings console

Simulation Button

Bolus button

Page 30 of 30

_1298699856.vsd
￼

text

Infusion Sub Machine

Alrm_EmptyReservior

Alrm_LevelTwoHardwareFailure

CheckDrug

Alrm_WrongDrug

InfusionPaused

Alrm_TooLongInfusionPause

PausedStopConfirm

InfusionStopped

ConfirmPowerOff

E_PowerButton

E_Cancel

E_Cancel

E_ConfirmPauseInfusion

E_StopInfusion

Cond_6_1

Level_Two_Alarm

E_StopInfusion

E_StopInfusion

E_ConfirmStopInfusion

E_ClearAlarm

Level_Two_Alarm

Level_Two_Alarm

Cond_6_2

Cond_6_3

Cond_6_5

Cond_6_4

E_CheckDrug

E_StopInfusion

E_CheckDrug

E_ClearAlarm

E_StopInfusion

E_ConfirmStopInfusion

CheckAdministrationSet

E_NewInfusion

ReadyToStart

Cond_2

E_Cancel

_1298700463.vsd
￼

text

DisplayVTBI

CheckVTBI

Alrm_VTBIHardLimitsViolation

DisplayDoseRate

Alarming / Dose Rate Out of Bound

Change Dose Rate

DisplaySettings

Wrn_VTBISoftLimitsViolation

Check Dose Rate

Wrn_DoseRateSoftLimitsViolation

E_ChangeVTBI

Cond_4_1

Cond_4_2

Cond_4_3

ChangeVTBI

E_Cancel

ConfirmPowerOff

DisplayPatientProfile

E_ConfigureInfusionProgram

E_PowerButton

E_Cancel

E_Cancel

E_ConfirmVTBI

E_ConfirmVTBI

E_ChangeVTBI

E_ConfirmVTBI

Cond_4_4

Cond_4_5

Cond_4_6

E_ConfirmDoseRate

E_ConfirmDoseRate

E_ChangeDoseRate

E_ConfirmDoseRate

E_ChangeVTBI

E_ChangeDoseRate

ReadyToStart

E_StartInfusion

Cond_2

Cond_5

Infusion_NormalOperation

_1298703683.vsd
￼

text

CheckDrugType

CheckDoseUnit

Arm_UnknownDrug

Alrm_DoseUnitMismatch

CheckConcentration

Wrn_ConcentrationSoftLimistsViolation

Alrm_ConcentrationHardLimistsViolation

E_ConfirmConcentration

DisplayPatientProfile

E_ConfigureInfusionProgram

CheckAdministrationSet

Alrm_IncorrectAdministratrionSetup

CheckPrime

Alrm_PrimeFailure

E_Cancel

E_PowerButton

E_CheckDrug

Cond_3_5

Cond_3_7

Cond_3_8

Cond_3_9

Cond_3_10

Cond_3_8

Cond_3_6

DisplayDrugInfo

E_CheckDrug

E_Cancel

DisplayVTBI

POSTDone

Confirm Power Off

E_CheckAdminSet

E_CheckAdminSet

E_Prime

Cond_3_1

Cond_3_3

Cond_3_2

Cond_3_4

_1298699871.vsd
￼

Infusion_ NormalOperation

Bolus Request

ChangeRate

Check
New
Rate

Alrm_UnsafeNewRate

E_Cancel

ConfirmStop

ConfirmPowerOff

ConfirmPause

InfusionStopped

E_ConfirmStop

ReadyToStart

Level_Two_Alarm

Cond_2

E_BolusRequest

Cond_7_1

Cond_7_2

E_Cancel

E_ConfirmDoseRate

Cond_7_3

Cond_7_4

E_StopInfusion

E_Cancel

E_PauseInfusion

E_ConfirmPauseInfusion

InfusionPaused

Cond_6_4

CheckDrug

E_Cancel

Cond_6_2

Alrm_LevelTwoHardwareFailure

E_ChangeDoseRate

E_Cancel

E_ClearAlarm

E_ChangeDR

E_PowerButton

E_Cancel

_1298699490.vsd
PowerOff

POST

Alrm_POSTFailure

POSTDone

E_CheckAdminSet

Check Drug
Routine

Infusion Session
Sub Machine

ConfirmPowerOff

E_Confirm

E_PowerButton

Cond_1_1

E_ConfigureInfusionProgram

Cond_2

E_PowerButton

E_NewInfusion

Level_One_Alarm

E_PowerButton

E_Cancel

Alrm_LevelOneHardwareFaiure

Cond_1_2

E_PowerButton

Infusion Configuration Routine

_1298690120.vsd
Alarm Detection
Controller

Pump Ready / Not Ready

Alarm/Alert/Warning Notifications

Environment Sensor Signals Input

Pump Hardware Sensor Signals Input

Infusion Sensor Signals Input

Alarm Detection State Machine

Level One Alarm Detection Component

Level Two Alert Detection Component

Warning Detection Component

Restart Checking

Restart Checking

Restart Checking

Level One Alarm

Level Two Alert

Warning

Pump Readiness Checking Component

Start Infusion / Pause Infusion / Clear Alarm

